Select any two CPUs for comparison
VS

Gaming Performance Comparison

Recommended System Requirements
Game Pentium Dual Core B940 2.0GHz Turion II Dual-Core Mobile P520
Cyberpunk 2077 433% 605%
Call of Duty Warzone 365% 515%
Grand Theft Auto VI 810% 1104%
Assassins Creed: Valhalla 571% 788%
Valorant 221% 325%
Saints Row 3 Remastered 569% 784%
Maneater 433% 605%
Mount and Blade 2: Bannerlord 744% 1017%
Doom Eternal 646% 887%
Mafia 2: Definitive Edition 416% 582%

In terms of overall gaming performance, the Intel Pentium Dual Core B940 2.0GHz is noticeably better than the AMD Turion II Dual-Core Mobile P520 when it comes to running the latest games. This also means it will be less likely to bottleneck more powerful GPUs, allowing them to achieve more of their gaming performance potential.

The Pentium Dual Core was released over a year more recently than the Turion II Dual-Core, and so the Pentium Dual Core is likely to have better levels of support, and will be more optimized for running the latest games.

The Pentium Dual Core and the Turion II Dual-Core both have 2 cores, and so are quite likely to struggle with the latest games, or at least bottleneck high-end graphics cards when running them. With a decent accompanying GPU, the Pentium Dual Core and the Turion II Dual-Core may still be able to run slightly older games fairly effectively.

More important for gaming than the number of cores and threads is the clock rate. Problematically, unless the two CPUs are from the same family, this can only serve as a general guide and nothing like an exact comparison, because the clock cycles per instruction (CPI) will vary so much.

The Pentium Dual Core and Turion II Dual-Core are not from the same family of CPUs, so their clock speeds are by no means directly comparable. Bear in mind, then, that while the Turion II Dual-Core has a 0.3 GHz faster frequency, this is not always an indicator that it will be superior in performance, despite frequency being crucial when trying to avoid GPU bottlenecking. As such, we need to look elsewhere for more reliable comparisons.

Aside from the clock rate, the next-most important CPU features for PC game performance are L2 and L3 cache size. Faster than RAM, the more cache available, the more data that can be stored for lightning-fast retrieval. L1 Cache is not usually an issue anymore for gaming, with most high-end CPUs eking out about the same L1 performance, and L2 is more important than L3 - but L3 is still important if you want to reach the highest levels of performance. Bear in mind that although it is better to have a larger cache, the larger it is, the higher the latency, so a balance has to be struck.

The Turion II Dual-Core has a 1536 KB bigger L2 cache than the Pentium Dual Core, and although the Turion II Dual-Core does not appear to have an L3 cache, its larger L2 cache means that it wins out in this area.

The maximum Thermal Design Power is the power in Watts that the CPU will consume in the worst case scenario. The lithography is the semiconductor manufacturing technology being used to create the CPU - the smaller this is, the more transistors that can be fit into the CPU, and the closer the connections. For both the lithography and the TDP, it is the lower the better, because a lower number means a lower amount of power is necessary to run the CPU, and consequently a lower amount of heat is produced.

The Turion II Dual-Core has a 10 Watt lower Maximum TDP than the Pentium Dual Core. However, the Pentium Dual Core was created with a 13 nm smaller manufacturing technology. Overall, by taking both into account, the Pentium Dual Core is likely the CPU with the lower heat production and power requirements, by a small amount.

CPU Core Details

CPU CodenameSandy BridgeChamplain
MoBo SocketrPGA 988A / B / Socket G1 / G2Socket S1g4
Notebook CPUyesyes
Release Date19 Jun 201112 May 2010
CPU LinkGD LinkGD Link
Approved

CPU Technical Specifications

CPU Cores2vs2
Clock Speed2 GHzvs2.3 GHz
Turbo Frequency-vs-
Max TDP35 Wvs25 W
Lithography32 nmvs45 nm
Bit Width-vs-
Virtualization Technologynovsno
Comparison

CPU Cache and Memory

L1 Cache Size128 KBvs256 KB
L2 Cache Size512 KBvs2048 KB
L3 Cache Size2 MBvs-
ECC Memory Supportnovsno
Comparison

CPU Graphics

Graphicsnono

CPU Package and Version Specifications

Package Size-vs-
Revision-vs-
PCIe Revision-vs-
PCIe Configurations-vs-

Gaming Performance Value

Performance Value

CPU Mini Review

Mini ReviewThe Pentium Dual-Core brand was used for mainstream x86-architecture microprocessors from Intel from 2006 to 2009 when it was renamed to Pentium. The processors are based on either the 32-bit Yonah or (with quite different microarchitectures) 64-bit Merom-2M, Allendale, and Wolfdale-3M core, targeted at mobile or desktop computers. In terms of features, price and performance at a given clock frequency, Pentium Dual-Core processors were positioned above Celeron but below Core and Core 2 microprocessors in Intel's product range. The Pentium Dual-Core was also a very popular choice for overclocking, as it can deliver optimal performance (when overclocked) at a low price.Turion 64 X2 is AMD's 64-bit dual-core mobile CPU, intended to compete with Intel's Core and Core 2 CPUs. The Turion 64 X2 was launched on May 17, 2006, after several delays. These processors use Socket S1, and feature DDR2 memory. They also include AMD Virtualization Technology and more power-saving features. AMD first produced the Turion 64 X2 on IBM's 90 nm Silicon on insulator (SOI) process (cores with the Taylor codename). As of May 2007, they have switched to a 65 nm Silicon-Germanium stressed process[citation needed], which was recently achieved through the combined effort of IBM and AMD, with 40% improvement over comparable 65 nm processes. The earlier 90 nm devices were codenamed Taylor and Trinidad, while the newer 65 nm cores have codename Tyler.