Select any two CPUs for comparison
VS

Gaming Performance Comparison

Recommended System Requirements
Game Turion II Ultra Dual-Core Mobile M600 Core 2 Duo P7450 2.13GHz
Cyberpunk 2077 502% 473%
Assassins Creed: Valhalla 711% 672%
Call of Duty: Black Ops Cold War 484% 455%
FIFA 21 463% 436%
Watch Dogs Legion 711% 672%
Microsoft Flight Simulator 582% 549%
World of Warcraft: Shadowlands 836% 791%
Grand Theft Auto VI 890% 842%
Godfall 1063% 1007%
Genshin Impact 356% 334%

In terms of overall gaming performance, the Intel Core 2 Duo P7450 2.13GHz is marginally better than the AMD Turion II Ultra Dual-Core Mobile M600 when it comes to running the latest games. This also means it will be less likely to bottleneck more powerful GPUs, allowing them to achieve more of their gaming performance potential.

The Turion II Ultra was released less than a year after the Core 2 Duo, and so they are likely to have similar levels of support, and similarly optimized performance when running the latest games.

The Turion II Ultra and the Core 2 Duo both have 2 cores, and so are quite likely to struggle with the latest games, or at least bottleneck high-end graphics cards when running them. With a decent accompanying GPU, the Turion II Ultra and the Core 2 Duo may still be able to run slightly older games fairly effectively.

More important for gaming than the number of cores and threads is the clock rate. Problematically, unless the two CPUs are from the same family, this can only serve as a general guide and nothing like an exact comparison, because the clock cycles per instruction (CPI) will vary so much.

The Turion II Ultra and Core 2 Duo are not from the same family of CPUs, so their clock speeds are by no means directly comparable. Bear in mind, then, that while the Turion II Ultra has a 0.27 GHz faster frequency, this is not always an indicator that it will be superior in performance, despite frequency being crucial when trying to avoid GPU bottlenecking. As such, we need to look elsewhere for more reliable comparisons.

Aside from the clock rate, the next-most important CPU features for PC game performance are L2 and L3 cache size. Faster than RAM, the more cache available, the more data that can be stored for lightning-fast retrieval. L1 Cache is not usually an issue anymore for gaming, with most high-end CPUs eking out about the same L1 performance, and L2 is more important than L3 - but L3 is still important if you want to reach the highest levels of performance. Bear in mind that although it is better to have a larger cache, the larger it is, the higher the latency, so a balance has to be struck.

The Core 2 Duo has a 1024 KB bigger L2 cache than the Turion II Ultra, but neither of the CPUs have L3 caches, so the Core 2 Duo wins out in this area with its larger L2 cache.

The maximum Thermal Design Power is the power in Watts that the CPU will consume in the worst case scenario. The lithography is the semiconductor manufacturing technology being used to create the CPU - the smaller this is, the more transistors that can be fit into the CPU, and the closer the connections. For both the lithography and the TDP, it is the lower the better, because a lower number means a lower amount of power is necessary to run the CPU, and consequently a lower amount of heat is produced.

The Core 2 Duo has a 10 Watt lower Maximum TDP than the Turion II Ultra (though they were created with the same size 45 nm manufacturing technology). What this means is the Core 2 Duo will consume slightly less power and consequently produce less heat, enabling more prolonged computational tasks with fewer adverse effects. This will lower your yearly electricity bill slightly, as well as prevent you from having to invest in extra cooling mechanisms (unless you overclock).

CPU Core Details

CPU CodenameCaspianPenryn
MoBo SocketSocket S1g3Socket P
Notebook CPUyesyes
Release Date10 Sep 200901 Jan 2009
CPU LinkGD LinkGD Link
Approved

CPU Technical Specifications

CPU Cores2vs2
Clock Speed2.4 GHzvs2.13 GHz
Turbo Frequency-vs-
Max TDP35 Wvs25 W
Lithography45 nmvs45 nm
Bit Width-vs-
Virtualization Technologynovsno
Comparison

CPU Cache and Memory

L1 Cache Size256 KBvs128 KB
L2 Cache Size2048 KBvs3072 KB
L3 Cache Size-vs-
ECC Memory Supportnovsno
Comparison

CPU Graphics

Graphicsnono

CPU Package and Version Specifications

Package Size-vs-
Revision-vs-
PCIe Revision-vs-
PCIe Configurations-vs-

Gaming Performance Value

Performance Value

CPU Mini Review

Mini ReviewTurion II Ultra (codenamed Caspian) is the mobile version of the K10.5 architecture produced using 45 nm fabrication process, also known by its desktop variant Regor. It is a dual core processor, and features clock speeds of 2.4 GHz to 2.7 GHz, 2 MB total L2 cache (1 MB per core), HyperTransport at 3.6 GT/s, and a 128 bit FPU. It maintains a TDP of 35W from its predecessor Turion X2 Ultra (codenamed Griffin).Core 2 is a brand encompassing a range of Intel's consumer 64-bit x86-64 single-, dual-, and quad-core microprocessors based on the Core microarchitecture. The single- and dual-core models are single-die, whereas the quad-core models comprise two dies, each containing two cores, packaged in a multi-chip module. The introduction of Core 2 relegated the Pentium brand to the mid-range market, and reunified laptop and desktop CPU lines, which previously had been divided into the Pentium 4, Pentium D, and Pentium M brands.
The Core microarchitecture returned to lower clock rates and improved the usage of both available clock cycles and power when compared with the preceding NetBurst microarchitecture of the Pentium 4/D-branded CPUs. The Core microarchitecture provides more efficient decoding stages, execution units, caches, and buses, reducing the power consumption of Core 2-branded CPUs while increasing their processing capacity. Intel's CPUs have varied widely in power consumption according to clock rate, architecture, and semiconductor process, shown in the CPU power dissipation tables.